
Data Science
Data Science – Complete Course Content (Beginner to Advanced)
Introduction to Data Science
- What is Data Science?
- Data Science lifecycle
- Roles: Data Analyst, Data Scientist, ML Engineer
- Real-time industry use casesTools overview: Python, Jupyter, SQL, Power BI
Python for Data Science
Python Basics
- Variables, data types
- Operators
- Conditional statements
- Loops
- Functions
- Lambda functions
- List, Tuple, Set, Dictionary
- Exception handling
Python for Data Handling
- NumPy (arrays, operations, reshaping, broadcasting)
- Pandas (Series, DataFrames, indexing, merging, grouping, missing values)
- Data cleaning & preprocessing
Data Visualization
Using Matplotlib & Seaborn
- Line, bar, scatter, histogram, pie charts
- Heatmaps
- Pairplots
- Distribution plots
- Customizing plots
Dashboards
- Power BI / Tableau basics
- Creating interactive dashboards
- DAX basics (if Power BI chosen)
Statistics & Probability for Data Science
- Types of data
- Measure of central tendency (Mean, Median, Mode)
- Dispersion (Variance, Std. Dev, Range, IQR)
- Probability basics
- Bayes theorem
- Hypothesis testing (Z-test, T-test, Chi-square, ANOVA)
- Correlation & Covariance
- Normal distribution
- Statistical inference
Exploratory Data Analysis (EDA)
- Data inspection
- Outlier detection & treatment
- Handling missing values
- Feature engineering
- Encoding techniques
- Scaling & normalization
- EDA report preparation
Machine Learning Basics
- ML workflow
- Types of ML: Supervised, Unsupervised, Reinforcement
- Bias-variance concept
- Cross-validatio
- Overfitting & underfitting
Supervised Learning Algorithms
- Linear Regression
- Logistic Regression
- Decision Tree
- Random Forest
- K-Nearest Neighbors (KNN)
- Support Vector Machine (SVM)
- Naïve Bayes
- Gradient Boosting: XGBoost / LightGBM basics

Unsupervised Learning Algorithms
- K-Means Clustering
- Hierarchical Clustering
- PCA (Dimensionality Reduction)
- Association Rules
- Anomaly Detection basics
Model Evaluation & Optimization
- Train-test split
- Evaluation metrics: accuracy, precision, recall, F1
- Confusion matrix
- ROC & AUC
- Hyperparameter tuning
- GridSearchCV / RandomizedSearchCV
- Feature importance
Deep Learning (Introduction)
- Neural network basics
- Activation functions
- Forward & backward propagation
- Loss functions
- Intro to TensorFlow / Keras
- Building a basic neural network
SQL for Data Science
- SQL basics
- Joins, subqueries
- Group By, Having
- Window functions
- Writing analytical queries
- Real-time project datasets
Deployment & Real-time Concepts
- Model saving (pickle, joblib)
- Streamlit basics
- Integrating ML model with UI
- Cloud basics (AWS/S3/EC2 intro)
Mini Projects + Capstone
- EDA project
- Classification project (banking/HR/healthcare)
- Clustering project
- Preparing project report & PPT
- Mock interviews